16 – padroni del vapore

Dal xviii secolo l’energia tratta dal carbon fossile poté fornire, grazie alla macchina atmosferica di Newcomen, pur con una dispersione straordinaria e rendimenti minimi (1%), un primo apporto di energia meccanica.
Dal 1780, quando i materiali a disposizione lo permettono, prese le mosse la vera rivoluzione energetica. Fu cosi che Papin, dopo aver inventato la pentola a pressione qualche anno prima, arrivò a mettere a punto la prima macchina a vapore degna di questo nome, capace di produrre una rilevante quantità di energia dal riscaldamento di una certa massa d’acqua.
Per il funzionamento della macchina, si deve disporre dentro il cilindro metallico un poco di acqua. Il pistone superiore è spinto verso il basso in modo da essere a contatto con l’acqua (l’aria che è nel cilindro fuoriesce da un piccolo foro lasciato nel pistone, foro che si richiude quando il pistone è sceso completamente). A questo punto si accende un focolare al di sotto del cilindro; il vapor d’acqua, vincendo la pressione atmosferica, solleva il pistone fino alla sommità del cilindro. In alto il pistone è bloccato da appositi ingranaggi per permettere di togliere il focolare con le seguenti successive conseguenze: raffreddamento del vapore, sua condensazione fino a tornare acqua, creazione del vuoto sopra la superficie dell’acqua. A questo punto si libera il pistone prima bloccato in alto.
Esso scenderà violentemente risucchiato dal vuoto. A questo punto si rimette il focolare sotto il cilindro e tutto procede di nuovo come nel ciclo precedente. La forza (il termine energia entrerà nella letteratura scientifica molto oltre, nel xix secolo) che si genera dipenderà dalle dimensioni in gioco, ed in particolare dal diametro del cilindro; sul rendimento influirà invece in modo marcato la tenuta tra pistone e cilindro.
Successivamente, grazie alle scoperte in campo termodinamico, si riuscì a sfruttare il cosiddetto “vuoto spinto” per pompare l’acqua dai pozzi o dalle miniere. Uno dei primissimi esempi di questo genere di applicazione fu la macchina di Savery del 1698.
Il vapore proveniente da una caldaia (edificio in muratura) era inviato, mediante un tubo, dentro un recipiente pieno d’acqua, con l’effetto di espellere quest’acqua verso l’alto, mediante un altro tubo. Successivamente il recipiente veniva raffreddato mediante un getto d’acqua dall’esterno. A seguito di ciò il vapore ivi presente (che aveva sostituito l’acqua precedentemente presente) condensava provocando il vuoto. In tal modo, la pressione atmosferica agente sull’acqua da sollevare in fondo al pozzo, poteva spingere quest’acqua nel recipiente vuoto (si può anche dire che il vuoto del recipiente aspirava l’acqua dal pozzo). A questo punto un nuovo getto di vapore proveniente dalla caldaia faceva defluire l’acqua verso l’alto. I recipienti presenti erano due, ed erano alternativamente riempiti e svuotati per maggiore efficienza dell’impianto. E’ chiaro che per realizzare tutto questo occorreva aprire e chiudere alternativamente rubinetti e valvole; tali operazioni venivano fatte manualmente.
Tuttavia non tutto in queste macchine andava come il progetto ideale prevedeva: la macchina sollevava l’acqua non oltre i circa 10 metri (limite torricelliano). Per risolvere tale problema Savery spinse sulla pressione, portandola alle circa 10 atmosfere (se si pensa che non vi erano valvole di sicurezza ci si rende conto che tali macchine erano delle potenziali bombe); la qual cosa, nelle previsioni teoriche, avrebbe moltiplicato per 10 il normale sollevamento ad una sola atmosfera, portandolo a circa 100 metri. Il tutto però avveniva con grande consumo di combustibile (carbone e legna), circa 20 volte quello di una normale macchina a vapore di alcuni anni dopo.
L’evoluzione successiva che sopperì alle mancanze della macchina di Savery fu la macchina di Newcomen del 1712 che, con più componenti meccaniche e una maggiore attenzione alla dispersione di energia, aveva accresciuto il rendimento con temperature più basse e una conseguente diminuzione della pericolosità.
Essa adottava cilindro e stantuffo di Papin e lavorava, contrariamente a Savery, a bassa pressione (quella atmosferica), fatto che la rendeva di molto più facile costruzione. Era poi molto affidabile per l’abilità artigiana di costruzione (dati gli standard piuttosto insoddisfacenti dell’epoca), per il fatto che Newcomen aveva esperienza di miniere e perché lavorava con un abile idraulico, Calley. Un fornello alimentava la caldaia che produceva vapore alla pressione atmosferica. Tale vapore veniva immesso dal basso nel cilindro e, aiutato dal bilanciere che manteneva inizialmente in equilibrio l’asta della pompa posta ad estremità opposta del bilanciere rispetto all’asta dello stantuffo, faceva sollevare lo stantuffo medesimo.
Appena il vapore aveva riempito il cilindro, mediante una valvola, si immetteva in esso dell’acqua fredda che originava la condensazione del vapore. In tal modo lo stantuffo precipitava verso il basso spinto dalla pressione atmosferica. Il bilanciere oscillava alternativamente da una parte e dall’altra, provocando la messa in funzione della pompa, situata a sinistra del bilanciere, che sollevava l’acqua dal basso.

08 – l’ora esatta

Volendo brevemente tracciare l’evoluzione degli orologi seguendo la precisione raggiunta, si può fare riferimento anche qui a Cipolla, che nel suo Le macchine del tempo presenta un grafico a far data dalla metà del xiv secolo, da prima che appaiano gli orologi con bilanciere a verga. In corrispondenza dell’introduzione di questo meccanismo si ha uno scarto giornaliero che passa dall’ordine del migliaio di secondi (tra i 16 e i 17 minuti) a uno di qualche centinaio. L’avvento del pendolo con Huygens nel 1657 dà luogo alla maggiore rivoluzione tecnologica nel campo dell’orologeria, poiché l’errore giornaliero scende drasticamente a circa una decina di secondi, ossia cento volte più piccolo di quello di tre secoli prima.
I perfezionamenti degli scappamenti, riguardanti per lo più il controllo degli attriti, danno miglioramenti incrementali, che saranno amplificati, nella prima metà del xviii secolo, prima dalle tecniche di compensazione della temperatura, principalmente a opera del’inglese George Graham, che nel 1726 diede notizia delle sue realizzazioni nelle Philosophical Transactions, e successivamente dai meccanismi a frizione ridotta che permisero a John Harrison di assicurarsi il Longitude Price. Il cronografo di Harrison scartava giornalmente di non più di tre decimi di secondo.
Il xix e l’inizio del XX secolo videro altri miglioramenti, dovuti a sistemi di compensazione rispetto all’azione della pressione atmosferica, e a riduzioni degli attriti. Con la compensazione barometrica di Alvin Robinson, lo scappamento del tedesco Sigmund Riefler e le riduzioni degli attriti operate da William H. Shortt l’errore giornaliero passò all’ordine di grandezza del millisecondo. Sino a questo momento (1929 circa) il pendolo era stata la base del funzionamento dei più precisi orologi esistenti.

Una nuova importante svolta si ebbe nel 1928, con l’invenzione dell’orologio al quarzo, che basa il calcolo sulle regolari vibrazioni meccaniche prodotte da un cristallo di quarzo. Un cristallo di questo materiale possiede la caratteristica della piezoelettricità: se sollecitato meccanicamente, vede la generazione di una differenza di potenziale ai propri poli; all’inverso, se percorso da corrente a una certa frequenza caratteristica, detta di risonanza, è in grado di vibrare. La frequenza di vibrazione è proporzionale alla forma e alla dimensione del cristallo, e soprattutto è costante. Come tale può essere utilizzata come segnale meccanico utile per il funzionamento di un orologio (occorre la realizzazione di un semplice circuito RLC). L’orologio al quarzo può raggiungere precisioni giornaliere vicine alla centesima parte di millisecondo.
A partire dagli anni ’60 l’evoluzione tecnologica permise la realizzazione dei primi orologi da polso al quarzo (il cui funzionamento dipende anche da una differenza di potenziale elettrico). Contemporaneamente si diffondevano quelli controllati a transistor e quelli a diapason basati sulle oscillazioni di un elemento in acciaio.
Considerando invece il dominio delle altissime precisioni, gli orologi atomici sfruttano le frequenze di oscillazione proprie di un certo atomo. Il più utilizzato è il cesio; per questo motivo la definizione operativa ultima del secondo è la sua uguaglianza con 9.192.631.770 cicli della radiazione corrispondente alla transizione tra due livelli energetici dello stato fondamentale dell’atomo di cesio. Ciò permette a tali strumenti di avere errori che non sorpassano il miliardesimo di secondo al giorno.
Sviluppi futuri vedono l’uso di “trappole di ioni” di mercurio, che secondo le attese potranno dare precisioni di 5 ordini di grandezza maggiori.